Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Infect Dis ; 131: 19-25, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2283448

ABSTRACT

OBJECTIVES: As the world transitions to COVID-19 endemicity, studies focusing on aerosol shedding of highly transmissible SARS-CoV-2 variants of concern (VOCs) are vital for the calibration of infection control measures against VOCs that are likely to circulate seasonally. This follow-up Gesundheit-II aerosol sampling study aims to compare the aerosol shedding patterns of Omicron VOC samples with pre-Omicron variants analyzed in our previous study. DESIGN: Coarse and fine aerosol samples from 47 patients infected with SARS-CoV-2 were collected during various respiratory activities (passive breathing, talking, and singing) and analyzed using reverse transcription-quantitative polymerase chain reaction and virus culture. RESULTS: Compared with patients infected with pre-Omicron variants, comparable SARS-CoV-2 RNA copy numbers were detectable in aerosol samples of patients infected with Omicron despite being fully vaccinated. Patients infected with Omicron also showed a slight increase in viral aerosol shedding during breathing activities and were more likely to have persistent aerosol shedding beyond 7 days after disease onset. CONCLUSION: This follow-up study reaffirms the aerosol shedding properties of Omicron and should guide continued layering of public health interventions even in highly vaccinated populations.


Subject(s)
COVID-19 , Humans , Follow-Up Studies , RNA, Viral , SARS-CoV-2
2.
Pharmaceutics ; 15(3)2023 Mar 12.
Article in English | MEDLINE | ID: covidwho-2272615

ABSTRACT

The COVID-19 pandemic has brought about unprecedented medical and healthcare challenges worldwide. With the continual emergence and spread of new COVID-19 variants, four drug compound libraries were interrogated for their antiviral activities against SARS-CoV-2. Here, we show that the drug screen has resulted in 121 promising anti-SARS-CoV-2 compounds, of which seven were further shortlisted for hit validation: citicoline, pravastatin sodium, tenofovir alafenamide, imatinib mesylate, calcitriol, dexlansoprazole, and prochlorperazine dimaleate. In particular, the active form of vitamin D, calcitriol, exhibits strong potency against SARS-CoV-2 on cell-based assays and is shown to work by modulating the vitamin D receptor pathway to increase antimicrobial peptide cathelicidin expression. However, the weight, survival rate, physiological conditions, histological scoring, and virus titre between SARS-CoV-2 infected K18-hACE2 mice pre-treated or post-treated with calcitriol were negligible, indicating that the differential effects of calcitriol may be due to differences in vitamin D metabolism in mice and warrants future investigation using other animal models.

3.
Front Public Health ; 10: 1067575, 2022.
Article in English | MEDLINE | ID: covidwho-2245630

ABSTRACT

Background and objectives: The high transmissibility of SARS-CoV-2 has exposed weaknesses in our infection control and detection measures, particularly in healthcare settings. Aerial sampling has evolved from passive impact filters to active sampling using negative pressure to expose culture substrate for virus detection. We evaluated the effectiveness of an active air sampling device as a potential surveillance system in detecting hospital pathogens, for augmenting containment measures to prevent nosocomial transmission, using SARS-CoV-2 as a surrogate. Methods: We conducted air sampling in a hospital environment using the AerosolSenseTM air sampling device and compared it with surface swabs for their capacity to detect SARS-CoV-2. Results: When combined with RT-qPCR detection, we found the device provided consistent SARS-CoV-2 detection, compared to surface sampling, in as little as 2 h of sampling time. The device also showed that it can identify minute quantities of SARS-CoV-2 in designated "clean areas" and through a N95 mask, indicating good surveillance capacity and sensitivity of the device in hospital settings. Conclusion: Active air sampling was shown to be a sensitive surveillance system in healthcare settings. Findings from this study can also be applied in an organism agnostic manner for surveillance in the hospital, improving our ability to contain and prevent nosocomial outbreaks.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Hospitals , Infection Control , Cross Infection/prevention & control
4.
Emerg Microbes Infect ; : 1-32, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2228703

ABSTRACT

Bats are reservoir hosts for various zoonotic viruses with pandemic potential in humans and livestock. In vitro systems for studying bat host-pathogen interactions are of significant interest. Here, we establish protocols to generate bat airway organoids (AOs) and airway epithelial cells differentiated at the air-liquid interface (ALI-AECs) from tracheal tissues of the cave-nectar bat Eonycteris spelaea. In particular, we describe steps which enable laboratories that do not have access to live bats to perform extended experimental work upon procuring an initial batch of bat primary airway tissue. Complete mucociliary differentiation required treatment with IL-13. E. spelaea ALI-AECs supported productive infection with PRV3M, an orthoreovirus for which Pteropodid bats are considered the reservoir species. However, these ALI-AECs did not support SARS-CoV-2 infection, despite E. spelaea ACE2 receptor being capable of mediating SARS-CoV-2 spike pseudovirus entry. This work provides critical model systems for assessing bat species specific virus susceptibility and the reservoir likelihood for emerging infectious agents.

5.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2208019

ABSTRACT

Background and objectives The high transmissibility of SARS-CoV-2 has exposed weaknesses in our infection control and detection measures, particularly in healthcare settings. Aerial sampling has evolved from passive impact filters to active sampling using negative pressure to expose culture substrate for virus detection. We evaluated the effectiveness of an active air sampling device as a potential surveillance system in detecting hospital pathogens, for augmenting containment measures to prevent nosocomial transmission, using SARS-CoV-2 as a surrogate. Methods We conducted air sampling in a hospital environment using the AerosolSenseTM air sampling device and compared it with surface swabs for their capacity to detect SARS-CoV-2. Results When combined with RT-qPCR detection, we found the device provided consistent SARS-CoV-2 detection, compared to surface sampling, in as little as 2 h of sampling time. The device also showed that it can identify minute quantities of SARS-CoV-2 in designated "clean areas” and through a N95 mask, indicating good surveillance capacity and sensitivity of the device in hospital settings. Conclusion Active air sampling was shown to be a sensitive surveillance system in healthcare settings. Findings from this study can also be applied in an organism agnostic manner for surveillance in the hospital, improving our ability to contain and prevent nosocomial outbreaks.

6.
Front Immunol ; 13: 950666, 2022.
Article in English | MEDLINE | ID: covidwho-2113954

ABSTRACT

The on-going COVID-19 pandemic has given rise to SARS-CoV-2 clades and variants with differing levels of symptoms and severity. To this end, we aim to systematically elucidate the changes in the pathogenesis as SARS-CoV-2 evolved from ancestral to the recent Omicron VOC, on their mechanisms (e.g. cytokine storm) resulting in tissue damage, using the established K18-hACE2 murine model. We reported that among the SARS-CoV-2 viruses tested, infection profiles were initially similar between viruses from early clades but started to differ greatly starting from VOC Delta, where the trend continues in Omicron. VOCs Delta and Omicron both accumulated a significant number of mutations, and when compared to VOCs Alpha, Beta, and earlier predecessors, showed reduced neurotropism and less apparent gene expression in cytokine storm associated pathways. They were shown to leverage on other pathways to cause tissue damage (or lack of in the case of Omicron). Our study highlighted the importance of elucidating the response profiles of individual SARS-CoV-2 iterations, as their propensity of severe infection via pathways like cytokine storm changes as more variant evolves. This will then affect the overall threat assessment of each variant as well as the use of immunomodulatory treatments as management of severe infections of each variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , COVID-19/genetics , Cytokine Release Syndrome , Lung/pathology , Pandemics
7.
Methods Mol Biol ; 2452: 213-224, 2022.
Article in English | MEDLINE | ID: covidwho-1844269

ABSTRACT

The nasal epithelium lining the human upper airway is the primary portal of entry for several respiratory pathogens, including the recently emerged SARS-CoV-2 virus responsible for the ongoing COVID-19 pandemic. Here, we describe in detail methods for in vitro ALI differentiation of primary cells collected from human donors, to obtain differentiated hNECs. This can serve as a physiologically relevant model to investigate various aspects of host-pathogen responses to SARS-CoV-2 and other emerging respiratory viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Epithelial Cells , Humans , Models, Biological , Pandemics
8.
Front Microbiol ; 13: 844447, 2022.
Article in English | MEDLINE | ID: covidwho-1785371

ABSTRACT

The ongoing SARS-CoV-2 pandemic has tested the capabilities of public health and scientific community. Since the dawn of the twenty-first century, viruses have caused several outbreaks, with coronaviruses being responsible for 2: SARS-CoV in 2007 and MERS-CoV in 2013. As the border between wildlife and the urban population continue to shrink, it is highly likely that zoonotic viruses may emerge more frequently. Furthermore, it has been shown repeatedly that these viruses are able to efficiently evade the innate immune system through various strategies. The strong and abundant antiviral innate immunity evasion strategies shown by SARS-CoV-2 has laid out shortcomings in our approach to quickly identify and modulate these mechanisms. It is thus imperative that there be a systematic framework for the study of the immune evasion strategies of these viruses, to guide development of therapeutics and curtail transmission. In this review, we first provide a brief overview of general viral evasion strategies against the innate immune system. Then, we utilize SARS-CoV-2 as a case study to highlight the methods used to identify the mechanisms of innate immune evasion, and pinpoint the shortcomings in the current paradigm with its focus on overexpression and protein-protein interactions. Finally, we provide a recommendation for future work to unravel viral innate immune evasion strategies and suitable methods to aid in the study of virus-host interactions. The insights provided from this review may then be applied to other viruses with outbreak potential to remain ahead in the arms race against viral diseases.

9.
Risk Manag Healthc Policy ; 15: 107-109, 2022.
Article in English | MEDLINE | ID: covidwho-1736612

ABSTRACT

The number of confirmed COVID-19 cases continues to rise around the world, which is a huge threat to the safety of people and the social economy. Despite the introduction of vaccines, effectively preventing and controlling the epidemic, especially in protecting vulnerable populations, remains a big challenge for countries worldwide. By summarizing the trajectory of several officially reported COVID-19 cases, we found that because the COVID-19 primary routes of transmission consist of respiratory droplets, aerosols and close contacts it remains containable with public health measures. Public health measures to contain the outbreak do not rely on the healthcare institution and government agencies alone but require the concerted efforts of the public with sustained vigilance and social responsibility. People who are showing symptoms or have had suspected contact need to keep wearing masks and be quarantined in time to prevent further chains of transmission.

10.
Clin Infect Dis ; 74(10): 1722-1728, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1707710

ABSTRACT

BACKGROUND: Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) superspreading events suggest that aerosols play an important role in driving the coronavirus disease 2019 (COVID-19) pandemic. To better understand how airborne SARS-CoV-2 transmission occurs, we sought to determine viral loads within coarse (>5 µm) and fine (≤5 µm) respiratory aerosols produced when breathing, talking, and singing. METHODS: Using a G-II exhaled breath collector, we measured viral RNA in coarse and fine respiratory aerosols emitted by COVID-19 patients during 30 minutes of breathing, 15 minutes of talking, and 15 minutes of singing. RESULTS: Thirteen participants (59%) emitted detectable levels of SARS-CoV-2 RNA in respiratory aerosols, including 3 asymptomatic and 1 presymptomatic patient. Viral loads ranged from 63-5821 N gene copies per expiratory activity per participant, with high person-to-person variation. Patients earlier in illness were more likely to emit detectable RNA. Two participants, sampled on day 3 of illness, accounted for 52% of total viral load. Overall, 94% of SARS-CoV-2 RNA copies were emitted by talking and singing. Interestingly, 7 participants emitted more virus from talking than singing. Overall, fine aerosols constituted 85% of the viral load detected in our study. Virus cultures were negative. CONCLUSIONS: Fine aerosols produced by talking and singing contain more SARS-CoV-2 copies than coarse aerosols and may play a significant role in SARS-CoV-2 transmission. Exposure to fine aerosols, especially indoors, should be mitigated. Isolating viable SARS-CoV-2 from respiratory aerosol samples remains challenging; whether this can be more easily accomplished for emerging SARS-CoV-2 variants is an urgent enquiry necessitating larger-scale studies.


Subject(s)
COVID-19 , Singing , Aerosols , Humans , RNA, Viral/genetics , Respiratory Aerosols and Droplets , SARS-CoV-2 , Viral Load
11.
mBio ; : e0343621, 2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1632479

ABSTRACT

The dynamics of SARS-CoV-2 infection in COVID-19 patients are highly variable, with a subset of patients demonstrating prolonged virus shedding, which poses a significant challenge for disease management and transmission control. In this study, the long-term dynamics of SARS-CoV-2 infection were investigated using a human well-differentiated nasal epithelial cell (NEC) model of infection. NECs were observed to release SARS-CoV-2 virus onto the apical surface for up to 28 days postinfection (dpi), further corroborated by viral antigen staining. Single-cell transcriptome sequencing (sc-seq) was utilized to explore the host response from infected NECs after short-term (3-dpi) and long-term (28-dpi) infection. We identified a unique population of cells harboring high viral loads present at both 3 and 28 dpi, characterized by expression of cell stress-related genes DDIT3 and ATF3 and enriched for genes involved in tumor necrosis factor alpha (TNF-α) signaling and apoptosis. Remarkably, this sc-seq analysis revealed an antiviral gene signature within all NEC cell types even at 28 dpi. We demonstrate increased replication of basal cells, absence of widespread cell death within the epithelial monolayer, and the ability of SARS-CoV-2 to replicate despite a continuous interferon response as factors likely contributing to SARS-CoV-2 persistence. This study provides a model system for development of therapeutics aimed at improving viral clearance in immunocompromised patients and implies a crucial role for immune cells in mediating viral clearance from infected epithelia. IMPORTANCE Increasing medical attention has been drawn to the persistence of symptoms (long-COVID syndrome) or live virus shedding from subsets of COVID-19 patients weeks to months after the initial onset of symptoms. In vitro approaches to model viral or symptom persistence are needed to fully dissect the complex and likely varied mechanisms underlying these clinical observations. We show that in vitro differentiated human NECs are persistently infected with SARS-CoV-2 for up to 28 dpi. This viral replication occurred despite the presence of an antiviral gene signature across all NEC cell types even at 28 dpi. This indicates that epithelial cell intrinsic antiviral responses are insufficient for the clearance of SARS-CoV-2, implying an essential role for tissue-resident and infiltrating immune cells for eventual viral clearance from infected airway tissue in COVID-19 patients.

12.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1487420

ABSTRACT

Tetraspanins are transmembrane glycoproteins that have been shown increasing interest as host factors in infectious diseases. In particular, they were implicated in the pathogenesis of both non-enveloped (human papillomavirus (HPV)) and enveloped (human immunodeficiency virus (HIV), Zika, influenza A virus, (IAV), and coronavirus) viruses through multiple stages of infection, from the initial cell membrane attachment to the syncytium formation and viral particle release. However, the mechanisms by which different tetraspanins mediate their effects vary. This review aimed to compare and contrast the role of tetraspanins in the life cycles of HPV, HIV, Zika, IAV, and coronavirus viruses, which cause the most significant health and economic burdens to society. In doing so, a better understanding of the relative contribution of tetraspanins in virus infection will allow for a more targeted approach in the treatment of these diseases.


Subject(s)
Host-Pathogen Interactions/physiology , Tetraspanins/physiology , Virus Diseases/metabolism , Gene Expression Regulation, Viral , HIV-1/pathogenicity , Humans , Influenza A virus/pathogenicity , Papillomaviridae/pathogenicity , SARS-CoV-2/pathogenicity , Virus Diseases/genetics , Virus Diseases/virology , Virus Internalization , Zika Virus/pathogenicity
13.
Am J Respir Cell Mol Biol ; 64(1): 16-18, 2021 01.
Article in English | MEDLINE | ID: covidwho-1066995
14.
PLoS Pathog ; 16(12): e1009130, 2020 12.
Article in English | MEDLINE | ID: covidwho-962381

ABSTRACT

The novel coronavirus SARS-CoV-2 is the causative agent of Coronavirus Disease 2019 (COVID-19), a global healthcare and economic catastrophe. Understanding of the host immune response to SARS-CoV-2 is still in its infancy. A 382-nt deletion strain lacking ORF8 (Δ382 herein) was isolated in Singapore in March 2020. Infection with Δ382 was associated with less severe disease in patients, compared to infection with wild-type SARS-CoV-2. Here, we established Nasal Epithelial cells (NECs) differentiated from healthy nasal-tissue derived stem cells as a suitable model for the ex-vivo study of SARS-CoV-2 mediated pathogenesis. Infection of NECs with either SARS-CoV-2 or Δ382 resulted in virus particles released exclusively from the apical side, with similar replication kinetics. Screening of a panel of 49 cytokines for basolateral secretion from infected NECs identified CXCL10 as the only cytokine significantly induced upon infection, at comparable levels in both wild-type and Δ382 infected cells. Transcriptome analysis revealed the temporal up-regulation of distinct gene subsets during infection, with anti-viral signaling pathways only detected at late time-points (72 hours post-infection, hpi). This immune response to SARS-CoV-2 was significantly attenuated when compared to infection with an influenza strain, H3N2, which elicited an inflammatory response within 8 hpi, and a greater magnitude of anti-viral gene up-regulation at late time-points. Remarkably, Δ382 induced a host transcriptional response nearly identical to that of wild-type SARS-CoV-2 at every post-infection time-point examined. In accordance with previous results, Δ382 infected cells showed an absence of transcripts mapping to ORF8, and conserved expression of other SARS-CoV-2 genes. Our findings shed light on the airway epithelial response to SARS-CoV-2 infection, and demonstrate a non-essential role for ORF8 in modulating host gene expression and cytokine production from infected cells.


Subject(s)
COVID-19/virology , Nasal Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Proteins/genetics , Chemokine CXCL10/immunology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/virology , Host-Pathogen Interactions/physiology , Humans , Kinetics , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Transcriptome , Viral Proteins/immunology , Virus Replication/physiology
15.
Mil Med Res ; 7(1): 11, 2020 03 13.
Article in English | MEDLINE | ID: covidwho-8393

ABSTRACT

An acute respiratory disease, caused by a novel coronavirus (SARS-CoV-2, previously known as 2019-nCoV), the coronavirus disease 2019 (COVID-19) has spread throughout China and received worldwide attention. On 30 January 2020, World Health Organization (WHO) officially declared the COVID-19 epidemic as a public health emergency of international concern. The emergence of SARS-CoV-2, since the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, marked the third introduction of a highly pathogenic and large-scale epidemic coronavirus into the human population in the twenty-first century. As of 1 March 2020, a total of 87,137 confirmed cases globally, 79,968 confirmed in China and 7169 outside of China, with 2977 deaths (3.4%) had been reported by WHO. Meanwhile, several independent research groups have identified that SARS-CoV-2 belongs to ß-coronavirus, with highly identical genome to bat coronavirus, pointing to bat as the natural host. The novel coronavirus uses the same receptor, angiotensin-converting enzyme 2 (ACE2) as that for SARS-CoV, and mainly spreads through the respiratory tract. Importantly, increasingly evidence showed sustained human-to-human transmission, along with many exported cases across the globe. The clinical symptoms of COVID-19 patients include fever, cough, fatigue and a small population of patients appeared gastrointestinal infection symptoms. The elderly and people with underlying diseases are susceptible to infection and prone to serious outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. Currently, there are few specific antiviral strategies, but several potent candidates of antivirals and repurposed drugs are under urgent investigation. In this review, we summarized the latest research progress of the epidemiology, pathogenesis, and clinical characteristics of COVID-19, and discussed the current treatment and scientific advancements to combat the epidemic novel coronavirus.


Subject(s)
Betacoronavirus , Coronavirus Infections , Disease Outbreaks , Pneumonia, Viral , Adult , Aged , Alphacoronavirus/genetics , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , China/epidemiology , Chiroptera , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Cough/etiology , Diarrhea/etiology , Disease Reservoirs , Fatigue/etiology , Female , Fever/etiology , Humans , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Peptidyl-Dipeptidase A , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Viral Envelope Proteins , Virulence , Virus Replication , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL